File | Size |
---|
01.Course Promo.mp4 | 4.67 MB |
02.Course Introduction.mp4 | 5.18 MB |
03.Linear Regression.mp4 | 10.97 MB |
04.The Least Squares Method.mp4 | 17.54 MB |
05.Linear Algebra Solution to Least Squares Problem.mp4 | 17.91 MB |
06.Example Linear Regression.mp4 | 6.00 MB |
07.Summary Linear Regression.mp4 | 1.61 MB |
08.Classification.mp4 | 1.67 MB |
09.Linear Discriminant Analysis.mp4 | 967.07 kB |
10.The Posterior Probability Functions.mp4 | 5.29 MB |
11.Modelling the Posterior Probability Functions.mp4 | 11.32 MB |
12.Linear Discriminant Functions.mp4 | 8.38 MB |
13.Estimating the Linear Discriminant Functions.mp4 | 8.59 MB |
14.Classifying Data Points Using Linear Discriminant Functions.mp4 | 4.95 MB |
15.LDA Example 1.mp4 | 20.16 MB |
16.LDA Example 2.mp4 | 26.94 MB |
17.Summary Linear Discriminant Analysis.mp4 | 4.83 MB |
18.Logistic Regression.mp4 | 1.63 MB |
19.Logistic Regression Model of the Posterior Probability Function.mp4 | 4.22 MB |
20.Estimating the Posterior Probability Function.mp4 | 12.92 MB |
21.The Multivariate Newton-Raphson Method.mp4 | 16.62 MB |
22.Maximizing the Log-Likelihood Function.mp4 | 21.45 MB |
23.Logistic Regression Example.mp4 | 14.30 MB |
24.Summary Logistic Regression.mp4 | 3.75 MB |
25.Artificial Neural Networks.mp4 | 778.55 kB |
26.Neural Network Model of the Output Functions.mp4 | 18.79 MB |
27.Forward Propagation.mp4 | 1.61 MB |
28.Choosing Activation Functions.mp4 | 5.91 MB |
29.Estimating the Output Functions.mp4 | 3.02 MB |
30.Error Function for Regression.mp4 | 3.34 MB |
31.Error Function for Binary Classification.mp4 | 8.14 MB |
32.Error Function for Multiclass Classification.mp4 | 6.26 MB |
33.Minimizing the Error Function Using Gradient Descent.mp4 | 9.21 MB |
34.Backpropagation Equations.mp4 | 6.15 MB |
35.Summary of Backpropagation.mp4 | 2.31 MB |
36.Summary Artificial Neural Networks.mp4 | 5.02 MB |
37.Maximal Margin Classifier.mp4 | 3.11 MB |
38.Definitions of Separating Hyperplane and Margin.mp4 | 8.45 MB |
39.Proof 1.mp4 | 10.84 MB |
40.Maximizing the Margin.mp4 | 5.34 MB |
41.Definition of Maximal Margin Classifier.mp4 | 1.54 MB |
42.Reformulating the Optimization Problem.mp4 | 12.22 MB |
43.Proof 2.mp4 | 1.81 MB |
44.Proof 3.mp4 | 7.29 MB |
45.Proof 4.mp4 | 12.97 MB |
46.Proof 5.mp4 | 8.14 MB |
47.Solving the Convex Optimization Problem.mp4 | 1.65 MB |
48.KKT Conditions.mp4 | 2.72 MB |
49.Primal and Dual Problems.mp4 | 2.07 MB |
50.Solving the Dual Problem.mp4 | 4.79 MB |
51.The Coefficients for the Maximal Margin Hyperplane.mp4 | 677.02 kB |
52.The Support Vectors.mp4 | 1.34 MB |
53.Classifying Test Points.mp4 | 2.49 MB |
54.Maximal Margin Classifier Example 1.mp4 | 14.39 MB |
55.Maximal Margin Classifier Example 2.mp4 | 16.72 MB |
56.Summary Maximal Margin Classifier.mp4 | 1.58 MB |
57.Support Vector Classifier.mp4 | 5.35 MB |
58.Slack Variables Points on Correct Side of Hyperplane.mp4 | 5.47 MB |
59.Slack Variables Points on Wrong Side of Hyperplane.mp4 | 2.19 MB |
60.Formulating the Optimization Problem.mp4 | 5.46 MB |
61.Definition of Support Vector Classifier.mp4 | 1.20 MB |
62.A Convex Optimization Problem.mp4 | 3.30 MB |
63.Solving the Convex Optimization Problem (Soft Margin).mp4 | 9.41 MB |
64.The Coefficients for the Soft Margin Hyperplane.mp4 | 2.92 MB |
65.Classifying Test Points (Soft Margin).mp4 | 2.38 MB |
66.The Support Vectors (Soft Margin).mp4 | 2.32 MB |
67.Support Vector Classifier Example 1.mp4 | 22.06 MB |
68.Support Vector Classifier Example 2.mp4 | 14.34 MB |
69.Summary Support Vector Classifier.mp4 | 1.94 MB |
70.Support Vector Machine Classifier.mp4 | 1.66 MB |
71.Enlarging the Feature Space.mp4 | 8.21 MB |
72.The Kernel Trick.mp4 | 6.86 MB |
73.Summary Support Vector Machine Classifier.mp4 | 3.40 MB |
Discuss.FreeTutorials.Us.html | 165.68 kB |
FreeCoursesOnline.Me.html | 108.30 kB |
FreeTutorials.Eu.html | 102.23 kB |
How you can help Team-FTU.txt | 259.00 B |
Torrent Downloaded From GloDls.to.txt | 84.00 B |
[TGx]Downloaded from torrentgalaxy.org.txt | 524.00 B |