Torrent details for "Liquet B. Mathematical Engineering of Deep Learning 2025 [andryold1]"    Log in to bookmark

wide
Torrent details
Cover
Download
Torrent rating (0 rated)
Controls:
Category:
Language:
English English
Total Size:
30.26 MB
Info Hash:
f4140a943df4b212e67721551c68ff234cc1388d
Added By:
Added:  
11-09-2024 12:25
Views:
155
Health:
Seeds:
64
Leechers:
15
Completed:
493
wide




Description
wide
Externally indexed torrent
If you are the original uploader, contact staff to have it moved to your account
Textbook in PDF format

Mathematical Engineering of Deep Learning provides a complete and concise overview of Deep Learning using the language of mathematics. The book provides a self-contained background on Machine Learning and optimization algorithms and progresses through the key ideas of Deep Learning. These ideas and architectures include deep neural networks, convolutional models, recurrent models, long/short-term memory, the attention mechanism, transformers, variational auto-encoders, diffusion models, generative adversarial networks, reinforcement learning, and graph neural networks. Concepts are presented using simple mathematical equations together with a concise description of relevant tricks of the trade. The content is the foundation for state-of-the-art Artificial Intelligence applications, involving images, sound, large language models, and other domains. The focus is on the basic mathematical description of algorithms and methods and does not require computer programming. The presentation is also agnostic to neuroscientific relationships, historical perspectives, and theoretical research. The benefit of such a concise approach is that a mathematically equipped reader can quickly grasp the essence of Deep Learning.
Key Features:
A perfect summary of deep learning not tied to any computer language, or computational framework.
An ideal handbook of deep learning for readers that feel comfortable with mathematical notation.
An up-to-date description of the most influential deep learning ideas that have made an impact on vision, sound, natural language understanding, and scientific domains.
The exposition is not tied to the historical development of the field or to neuroscience, allowing the reader to quickly grasp the essentials.
Deep Learning is easily described through the language of mathematics at a level accessible to many professionals. Readers from fields such as engineering, statistics, physics, pure mathematics, econometrics, operations research, quantitative management, quantitative biology, applied Machine Learning, or applied Deep Learning will quickly gain insights into the key mathematical engineering components of the field

  User comments    Sort newest first

No comments have been posted yet.



Post anonymous comment
  • Comments need intelligible text (not only emojis or meaningless drivel).
  • No upload requests, visit the forum or message the uploader for this.
  • Use common sense and try to stay on topic.

  • :) :( :D :P :-) B) 8o :? 8) ;) :-* :-( :| O:-D Party Pirates Yuk Facepalm :-@ :o) Pacman Shit Alien eyes Ass Warn Help Bad Love Joystick Boom Eggplant Floppy TV Ghost Note Msg


    CAPTCHA Image 

    Anonymous comments have a moderation delay and show up after 15 minutes