Externally indexed torrent
If you are the original uploader, contact staff to have it moved to your account
Textbook in PDF format
Up-to-date and in-depth text bridging the technology gap between fundamental research and industry-scale applications of porous materials for catalysis
Micro-Mesoporous Metallosilicates: Synthesis, Characterization, and Catalytic Applications comprehensively introduces the chemistry and catalytic technologies of metallosilicates, an important family of microporous crystalline zeolite and heteroatom-containing mesoporous materials, with a primary focus on design synthesis, characterization, theoretical studies, and catalytic applications of titanosilicates, tin-silicates, germanosilicates and Ti-mesosilica, and more.
The text covers recent advances in the synthesis of titanosilicates, including hydrothermal synthesis, dry-gel conversion, fluoride-assisted synthesis, and post-synthesis methods, along with the synthesis of metallosilicates with two-dimensional lamellar structures and their structural modifications as well as applications in selective oxidation reactions.
The text also discusses synthesis of germanosilicates with specially designed organic structure-directing agents, synthesis and catalytic applications of heteroatom-containing mesoporous silica, and dendritic mesoporous silica nanoparticles with unique wrinkled center-radial structures.
Overall, every important porous metallosilicate and its synthesis, characterization, pore engineering, catalytic application, and industrial technique and process are covered.
Specific sample topics discussed in Micro-Mesoporous Metallosilicates include:
Chemical post-modifications of titanosilicates, in terms of the effects on transfer, adsorption/desorption, and surface reactions.
X-Ray based techniques, ultraviolet-visible-near infrared spectroscopy, Raman spectroscopy, and solid-state NMR spectroscopy.
Theoretical calculation as an effective tool and supplement to understand the catalytic active center, structural character, and Brønsted/Lewis acidity.
Titanosilicates in the liquid-phase epoxidation reaction of propylene and propylene chloride to corresponding epoxides.
Effects of particle sizes, oxidation state, and location sites of Au nanoparticles, and epoxidation performance of Ti-containing materials.
Delivering cutting-edge research and bridging the technology gap between fundamental research and industrial applications, Micro-Mesoporous Metallosilicates is a valuable resource for chemists, materials scientists, chemical engineers, and experienced researchers in related fields.
Synthesis of Titanosilicates
Layered Heteroatom-Containing Zeolites
Synthesis and Catalytic Applications of Sn- and Zr-Zeolites
Synthesis of Germanosilicates
Structural Modifications on Germanosilicates
Heteroatom-Containing Dendritic Mesoporous Silica Nanoparticles
Chemical Post-Modifications of Titanosilicates
Spectroscopic Characterization of Heteroatom-Containing Zeolites
Theoretical Calculations of Heteroatom Substituted Zeolites
Catalytic Ammoximation of Ketones or Aldehydes Using Titanosilicates
Titanosilicate-Based Alkene Epoxidation Catalysis
Propylene Epoxidation with Cumene Hydroperoxide/Titanosilicates
Hydroxylation of Benzene and Phenol on Zeolite Catalysts
Bifunctional Titanosilicate Systems for the Gas-Phase Catalytic Propylene Epoxidation with Hydrogen and Oxygen
Zeolites Containing Heteroatoms/Metal Nanoparticles for Catalytic Conversion of Light Alkanes
Design and Applications of Single-Site Photocatalysis Using Metallosilicates