Machine Learning for Asset Managers by Marcos Lopez de Prado.pdf
3.27 MB
_ free audiobook version.txt
884.00 B
_ uploads will cease (your support needed - urgent - monthly goal).txt
615.00 B
xx
Machine Learning for Asset Managers by Marcos Lopez de Prado PDF
Successful investment strategies are specific implementations of general theories. An investment strategy that lacks a theoretical justification is likely to be false. Hence, an asset manager should concentrate her efforts on developing a theory rather than on backtesting potential trading rules. The purpose of this Element is to introduce machine learning (ML) tools that can help asset managers discover economic and financial theories. ML is not a black box, and it does not necessarily overfit. ML tools complement rather than replace the classical statistical methods. Some of ML's strengths include (1) a focus on out-of-sample predictability over variance adjudication; (2) the use of computational methods to avoid relying on (potentially unrealistic) assumptions; (3) the ability to "learn" complex specifications, including nonlinear, hierarchical, and noncontinuous interaction effects in a high-dimensional space; and (4) the ability to disentangle the variable search from the specification search, robust to multicollinearity and other substitution effects.
Comments need intelligible text (not only emojis or meaningless drivel). No upload requests, visit the forum or message the uploader for this. Use common sense and try to stay on topic.