Torrent details for "Molnar C. Introduction To Conformal Prediction With Python. A Short Guide 2023 [andryold1]"    Log in to bookmark

Torrent details
Cover
Download
Torrent rating (0 rated)
Controls:
Category:
Language:
English English
Total Size:
12.89 MB
Info Hash:
7373aeb1e8cdc8fba4257849f0db25ba05f31b55
Added By:
Added:  
19-02-2023 17:03
Views:
158
Health:
Seeds:
4
Leechers:
0
Completed:
257




Description
Externally indexed torrent
If you are the original uploader, contact staff to have it moved to your account
Textbook in PDF format

This book teaches you how to quantify the uncertainty of machine learning models with conformal prediction in Python.
Introduction To Conformal Prediction With Python is the quickest way to learn an easy-to-use and very general technique for uncertainty quantification.
Summary
A prerequisite for trust in Machine Learning is uncertainty quantification. Without it, an accurate prediction and a wild guess look the same.
Yet many machine learning models come without uncertainty quantification. And while there are many approaches to uncertainty – from Bayesian posteriors to bootstrapping – we have no guarantees that these approaches will perform well on new data.
At first glance conformal prediction seems like yet another contender. But conformal prediction can work in combination with any other uncertainty approach and has many advantages that make it stand out
Guaranteed coverage: Prediction regions generated by conformal prediction come with coverage guarantees of the true outcome
Easy to use: Conformal prediction approaches can be implemented from scratch with just a few lines of code
Model-agnostic: Conformal prediction works with any machine learning model
Distribution-free: Conformal prediction makes no distributional assumptions
No retraining required: Conformal prediction can be used without retraining the model
Broad application: conformal prediction works for classification, regression, time series forecasting, and many other tasks
Sound good?
Then this is the right book for you to learn about this versatile, easy-to-use yet powerful tool for taming the uncertainty of your models.
"This concise book is accessible, lucid, and full of helpful code snippets. It explains the mathematical ideas with clarity and provides the reader with practical examples that illustrate the essence of conformal prediction, a powerful idea for uncertainty quantification." – Junaid Butt, Research Software Engineer, IBM Research
"Great practical examples, easy explanations, and highly entertaining. If you want to learn about the best Uncertainty Quantification framework for the 21st century, don't miss out on this book." – Valeriy Manokhin, Managing Director at Open Predictive Technologies &amp Creator of Awesome Conformal Prediction
This book:
Teaches the intuition behind conformal prediction
Demonstrates how conformal prediction works for classification and regression
Shows how to apply conformal prediction using Python and MAPIE
Enables you to quickly learn new conformal algorithms
With the knowledge in this book, you'll be ready to quantify the uncertainty of any model.
Who This Book Is For:
This book is for data scientists, statisticians, machine learners and all other modelers who want to learn how to quantify uncertainty with conformal prediction. Even if you already use uncertainty quantification in one way or another, conformal prediction is a valuable addition to your toolbox.
Prerequisites:
• You should know the basics of machine learning
• Practical experience with modeling is helpful
• If you want to follow the code examples, you should know the basics of Python or at least another programming language
• This includes knowing how to install Python and Python libraries
The book is not an academic introduction to the topic, but a very practical one. So instead of lots of theory and math, there will be intuitive explanations and hands-on examples.
Contents:
1 Summary
2 Preface
3 Who This Book Is For
4 Introduction to Conformal Prediction
5 Getting Started with Conformal Prediction in Python
6 Intuition Behind Conformal Prediction
7 Classification
8 Regression and Quantile Regression
9 A Glimpse Beyond Classification and Regression
10 Design Your Own Conformal Predictor
11 Q &amp A
12 Acknowledgements
References

  User comments    Sort newest first

No comments have been posted yet.



Post anonymous comment
  • Comments need intelligible text (not only emojis or meaningless drivel).
  • No upload requests, visit the forum or message the uploader for this.
  • Use common sense and try to stay on topic.

  • :) :( :D :P :-) B) 8o :? 8) ;) :-* :-( :| O:-D Party Pirates Yuk Facepalm :-@ :o) Pacman Shit Alien eyes Ass Warn Help Bad Love Joystick Boom Eggplant Floppy TV Ghost Note Msg


    CAPTCHA Image 

    Anonymous comments have a moderation delay and show up after 15 minutes