Torrent details for "Davis J. Introduction to Environmental Data Science 2023 [andryold1]"    Log in to bookmark

Torrent details
Cover
Download
Torrent rating (0 rated)
Controls:
Category:
Language:
English English
Total Size:
76.72 MB
Info Hash:
9b418bcb954eabe4586b14967c1eefa2bb771cdf
Added By:
Added:  
10-02-2023 15:10
Views:
127
Health:
Seeds:
0
Leechers:
0
Completed:
169




Description
Externally indexed torrent
If you are the original uploader, contact staff to have it moved to your account
Textbook in PDF format

Introduction to Environmental Data Science focuses on data science methods in the R language applied to environmental research, with sections on exploratory data analysis in R including data abstraction, transformation, and visualization spatial data analysis in vector and raster models statistics and modelling ranging from exploratory to modelling, considering confirmatory statistics and extending to machine learning models time series analysis, focusing especially on carbon and micrometeorological flux and communication. Introduction to Environmental Data Science is an ideal textbook to teach undergraduate to graduate level students in environmental science, environmental studies, geography, earth science, and biology, but can also serve as a reference for environmental professionals working in consulting, NGOs, and government agencies at the local, state, federal, and international levels.
In the Chapter 2 we’ll introduce the R language, using RStudio to explore its basic data types, structures, functions and programming methods in base R. We’re assuming you’re either new to R or need a refresher. Later chapters will add packages that extend what you can do with base R for data abstraction, transformation, and visualization, then explore the spatial world, statistical models, and time series applied to environmental research.
Features:
• Gives thorough consideration of the needs for environmental research in both spatial and temporal domains.
• Features examples of applications involving field-collected data ranging from individual observations to data logging.
• Includes examples also of applications involving government and NGO sources, ranging from satellite imagery to environmental data collected by regulators such as EPA.
• Contains class-tested exercises in all chapters other than case studies. Solutions manual available for instructors.
• All examples and exercises make use of a GitHub package for functions and especially data

  User comments    Sort newest first

No comments have been posted yet.



Post anonymous comment
  • Comments need intelligible text (not only emojis or meaningless drivel).
  • No upload requests, visit the forum or message the uploader for this.
  • Use common sense and try to stay on topic.

  • :) :( :D :P :-) B) 8o :? 8) ;) :-* :-( :| O:-D Party Pirates Yuk Facepalm :-@ :o) Pacman Shit Alien eyes Ass Warn Help Bad Love Joystick Boom Eggplant Floppy TV Ghost Note Msg


    CAPTCHA Image 

    Anonymous comments have a moderation delay and show up after 15 minutes