Torrent details for "Ouyang F. Artificial Intelligence in STEM Education...2022 [andryold1]"    Log in to bookmark

wide
Torrent details
Cover
Download
Torrent rating (0 rated)
Controls:
Category:
Language:
English English
Total Size:
43.77 MB
Info Hash:
1b9e7ceb1bb731289a7b687436f41b137e50ba20
Added By:
Added:  
03-12-2022 11:52
Views:
104
Health:
Seeds:
2
Leechers:
0
Completed:
80
wide




Description
wide
Externally indexed torrent
If you are the original uploader, contact staff to have it moved to your account
Textbook in PDF format

Artificial Intelligence (AI) opens new opportunities for STEM education in K-12, higher education, and professional education contexts. This book summarizes AI in education (AIED) with a particular focus on the research, practice, and technological paradigmatic shifts of AIED in recent years. The 23 chapters in this edited collection track the paradigmatic shifts of AIED in STEM education, discussing how and why the paradigms have shifted, explaining how and in what ways AI techniques have ensured the shifts, and envisioning what directions next-generation AIED is heading in the new era. As a whole, the book illuminates the main paradigms of AI in STEM education, summarizes the AI-enhanced techniques and applications used to enable the paradigms, and discusses AI-enhanced teaching, learning, and design in STEM education. It provides an adapted educational policy so that practitioners can better facilitate the application of AI in STEM education.
Bayesian networks were widely used to make probabilistic inferences based on the learners’ performance data of CBAs. Bayesian networks are a type of probabilistic graphic models, which graphically represent a joint distribution of a set of random variables. Essentially, building a Bayesian network requires the specification of a directed acyclic graph and a table of probability distributions for each variable, or called node, in the graph. Figure 12.1 presents an example Bayesian network with three nodes. In the network, each node represents a random variable and directional edge represents the dependency or the causal relationship between two random variables. The two bottom nodes of squares represent two assessment items indicating learners’ item responses (i.e., correct/incorrect) and the top node of oval represents the latent skill measured by the two items (i.e., mastery/non-mastery). As such, the example network depicts that learners’ probabilities of giving correct or incorrect responses to item 1 and item 2 are dependent on their probabilities of having the latent skill mastered or not.
This book is a must-read for researchers, educators, students, designers, and engineers who are interested in the opportunities and challenges of AI in STEM education

  User comments    Sort newest first

No comments have been posted yet.



Post anonymous comment
  • Comments need intelligible text (not only emojis or meaningless drivel).
  • No upload requests, visit the forum or message the uploader for this.
  • Use common sense and try to stay on topic.

  • :) :( :D :P :-) B) 8o :? 8) ;) :-* :-( :| O:-D Party Pirates Yuk Facepalm :-@ :o) Pacman Shit Alien eyes Ass Warn Help Bad Love Joystick Boom Eggplant Floppy TV Ghost Note Msg


    CAPTCHA Image 

    Anonymous comments have a moderation delay and show up after 15 minutes