Torrent details for "Tasic A. Adaptative Low-Power Circuits For Wireless Commun. 2006 [andryold1]"    Log in to bookmark

wide
Torrent details
Cover
Download
Torrent rating (0 rated)
Controls:
Category:
Language:
English English
Total Size:
2.73 MB
Info Hash:
a80faeba8fb051a604283bbea867bab01f6f21b6
Added By:
Added:  
08-10-2022 14:06
Views:
74
Health:
Seeds:
0
Leechers:
0
Completed:
52
wide




Description
wide
Externally indexed torrent
If you are the original uploader, contact staff to have it moved to your account
Textbook in PDF format

Some background on wireless and RF circuits and systems is given in Chapter 1. Application of adaptivity to low-power and multistandard wireless RF circuits is then discussed. After the introductory chapter, basic definitions of receiver performance parameters are reviewed in Chapter 2, viz., gain, linearity and noise parameters. Chapter 3 discusses spectrum and signal transformation in various downconverter topologies. Mixer-oscillator models are then classified. Using the spectrum-signal presentation and the mixer-oscillator models, an all-encompassing analysis of a number of receiver
architectures and related phenomena is performed. A procedure to select noise and linearity specifications for receiver circuits is described in Chapter 4. An outline is given for the assigning of the noise and linearity performance parameters to receiver circuits. In addition, we derive conditions for the optimal dynamic range of a receiver, and for the equal noise and linearity improvements with respect to the performance requirements. Finally, some design tradeoffs between performance parameters in a single receiver circuit are described by means of a K-rail diagram. Chapter 5 introduces amplifier adaptivity models (i.e., adaptivity figures of merit). They give insight into how low-noise amplifiers can trade performance, such as noise figure, gain, and linearity, for power consumption. The performance trade-offs in adaptive low-noise amplifiers are discussed using amplifier K-rail diagrams. The application of adaptivity concepts to voltage-controlled oscillators is discussed in Chapter 6. The concepts of phase-noise tuning and frequency-transconductance tuning are first introduced. An adaptive phase-noise oscillator model is then derived. The adaptivity figures of merit are defined, viz., the phase-noise tuning range and frequency-transconductance sensitivity. Comprehensive performance characterization of oscillators by means of K-rail diagrams concludes this section. Numerous relationships and trade-offs between oscillator performance parameters, such as voltage swing, tank conductance, power consumption, phase noise, and loop gain, are qualitatively and quantitatively described. Furthermore, the oscillator adaptivity figures of merit are captured using K-rail diagrams. Adaptivity design proofs-of-concept are reviewed in Chapter 7. An 800MHz voltage-controlled oscillator design is presented with a phasenoise tuning range of 7dB and a factor of around three saving in power consumption. In addition, we discuss an adaptive multistandard/multimode voltage-controlled oscillator and a multi-mode quadrature downconverter in the context of the second- and third-generation standards, i.e., DCS1800, WCDMA, WLAN, Bluetooth and DECT. By trading RF performance for current consumption, the adaptive oscillator and the adaptive image-reject downconverter offer factors of 12 and 2 saving in power consumption, respectively, between the
demanding mode (e.g., DCS1800) and the relaxed mode (e.g., DECT) of operation

  User comments    Sort newest first

No comments have been posted yet.



Post anonymous comment
  • Comments need intelligible text (not only emojis or meaningless drivel).
  • No upload requests, visit the forum or message the uploader for this.
  • Use common sense and try to stay on topic.

  • :) :( :D :P :-) B) 8o :? 8) ;) :-* :-( :| O:-D Party Pirates Yuk Facepalm :-@ :o) Pacman Shit Alien eyes Ass Warn Help Bad Love Joystick Boom Eggplant Floppy TV Ghost Note Msg


    CAPTCHA Image 

    Anonymous comments have a moderation delay and show up after 15 minutes