Torrent details for "Sugiyama M. Machine Learning from Weak Supervision...2022 [andryold1]"    Log in to bookmark

wide
Torrent details
Cover
Download
Torrent rating (0 rated)
Controls:
Category:
Language:
English English
Total Size:
37.05 MB
Info Hash:
470318b3c3aad64a0067d4b0d3a77708403a536d
Added By:
Added:  
25-09-2022 14:17
Views:
85
Health:
Seeds:
1
Leechers:
0
Completed:
177
wide




Description
wide
Externally indexed torrent
If you are the original uploader, contact staff to have it moved to your account
Textbook in PDF format

Fundamental theory and practical algorithms of weakly supervised classification, emphasizing an approach based on empirical risk minimization.
Standard Machine Learning (ML) techniques require large amounts of labeled data to work well. When we apply machine learning to problems in the physical world, however, it is extremely difficult to collect such quantities of labeled data. In this book Masashi Sugiyama, Han Bao, Takashi Ishida, Nan Lu, Tomoya Sakai and Gang Niu present theory and algorithms for weakly supervised learning, a paradigm of machine learning from weakly labeled data. Emphasizing an approach based on empirical risk minimization and drawing on state-of-the-art research in weakly supervised learning, the book provides both the fundamentals of the field and the advanced mathematical theories underlying them. It can be used as a reference for practitioners and researchers and in the classroom.
The book first mathematically formulates classification problems, defines common notations, and reviews various algorithms for supervised binary and multiclass classification. It then explores problems of binary weakly supervised classification, including positive-unlabeled (PU) classification, positive-negative-unlabeled (PNU) classification, and unlabeled-unlabeled (UU) classification. It then turns to multiclass classification, discussing complementary-label (CL) classification and partial-label (PL) classification. Finally, the book addresses more advanced issues, including a family of correction methods to improve the generalization performance of weakly supervised learning and the problem of class-prior estimation

  User comments    Sort newest first

No comments have been posted yet.



Post anonymous comment
  • Comments need intelligible text (not only emojis or meaningless drivel).
  • No upload requests, visit the forum or message the uploader for this.
  • Use common sense and try to stay on topic.

  • :) :( :D :P :-) B) 8o :? 8) ;) :-* :-( :| O:-D Party Pirates Yuk Facepalm :-@ :o) Pacman Shit Alien eyes Ass Warn Help Bad Love Joystick Boom Eggplant Floppy TV Ghost Note Msg


    CAPTCHA Image 

    Anonymous comments have a moderation delay and show up after 15 minutes