Torrent details for "Weisinger K. Codeless Time Series Analysis with KNIME 2022 [andryold1]"    Log in to bookmark

wide
Torrent details
Cover
Download
Torrent rating (0 rated)
Controls:
Category:
Language:
English English
Total Size:
24.68 MB
Info Hash:
e981093efad5f9388a4757fc6b5f83b2d962fdbb
Added By:
Added:  
22-08-2022 10:30
Views:
143
Health:
Seeds:
1
Leechers:
0
Completed:
52
wide




Description
wide
Externally indexed torrent
If you are the original uploader, contact staff to have it moved to your account
Textbook in PDF format

Perform time series analysis using KNIME Analytics Platform, covering both statistical methods and machine learning-based methods
Key Features:
Gain a solid understanding of time series analysis and its applications using KNIME
Learn how to apply popular statistical and machine learning time series analysis techniques
Integrate other tools such as Spark, H2O, and Keras with KNIME within the same application
Book Description:
This book will take you on a practical journey, teaching you how to implement solutions for many use cases involving time series analysis techniques.
This learning journey is organized in a crescendo of difficulty, starting from the easiest yet effective techniques applied to weather forecasting, then introducing ARIMA and its variations, moving on to machine learning for audio signal classification, training deep learning architectures to predict glucose levels and electrical energy demand, and ending with an approach to anomaly detection in IoT. There's no time series analysis book without a solution for stock price predictions and you'll find this use case at the end of the book, together with a few more demand prediction use cases that rely on the integration of KNIME Analytics Platform and other external tools.
By the end of this time series book, you'll have learned about popular time series analysis techniques and algorithms, KNIME Analytics Platform, its time series extension, and how to apply both to common use cases.
What you will learn:
Install and configure KNIME time series integration
Implement common preprocessing techniques before analyzing data
Visualize and display time series data in the form of plots and graphs
Separate time series data into trends, seasonality, and residuals
Train and deploy FFNN and LSTM to perform predictive analysis
Use multivariate analysis by enabling GPU training for neural networks
Train and deploy an ML-based forecasting model using Spark and H2O
Who this book is for:
This book is for data analysts and data scientists who want to develop forecasting applications on time series data. While no coding skills are required thanks to the codeless implementation of the examples, basic knowledge of KNIME Analytics Platform is assumed. The first part of the book targets beginners in time series analysis, and the subsequent parts of the book challenge both beginners as well as advanced users by introducing real-world time series applications

  User comments    Sort newest first

No comments have been posted yet.



Post anonymous comment
  • Comments need intelligible text (not only emojis or meaningless drivel).
  • No upload requests, visit the forum or message the uploader for this.
  • Use common sense and try to stay on topic.

  • :) :( :D :P :-) B) 8o :? 8) ;) :-* :-( :| O:-D Party Pirates Yuk Facepalm :-@ :o) Pacman Shit Alien eyes Ass Warn Help Bad Love Joystick Boom Eggplant Floppy TV Ghost Note Msg


    CAPTCHA Image 

    Anonymous comments have a moderation delay and show up after 15 minutes