Torrent details for "How Algorithms Create and Prevent Fake News: Exploring the Impacts of Social Media, Deepfakes, GPT-3..."    Log in to bookmark

wide
Torrent details
Cover
Download
Torrent rating (1 rated)
Controls:
Category:
Language:
English English
Total Size:
9.07 MB
Info Hash:
d58107f00eab6e6369aef2e1c762a1fbc2c6c5d1
Added By:
Added:  
15-07-2021 07:56 (edited 15-07-2021 07:59) by merrells:_trusted_user::_male:
Views:
375
Health:
Seeds:
0
Leechers:
0
Completed:
100
wide



Thanks for rating :
p751:_male: (5),


Description
wide
English | 2021 | ISBN: 1484271548 | 239 pages | pdf, epub | 9.07 MB
From deepfakes to GPT-3, deep learning is now powering a new assault on our ability to tell what’s real and what’s not, bringing a whole new algorithmic side to fake news. On the other hand, remarkable methods are being developed to help automate fact-checking and the detection of fake news and doctored media. Success in the modern business world requires you to understand these algorithmic currents, and to recognize the strengths, limits, and impacts of deep learning---especially when it comes to discerning the truth and differentiating fact from fiction.
This book tells the stories of this algorithmic battle for the truth and how it impacts individuals and society at large. In doing so, it weaves together the human stories and what’s at stake here, a simplified technical background on how these algorithms work, and an accessible survey of the research literature exploring these various topics.
How Algorithms Create and Prevent Fake News is an accessible, broad account of the various ways that data-driven algorithms have been distorting reality and rendering the truth harder to grasp. From news aggregators to Google searches to YouTube recommendations to Facebook news feeds, the way we obtain information today is filtered through the lens of tech giant algorithms. The way data is collected, labelled, and stored has a big impact on the machine learning algorithms that are trained on it, and this is a main source of algorithmic bias ­– which gets amplified in harmful data feedback loops. Don’t be afraid: with this book you’ll see the remedies and technical solutions that are being applied to oppose these harmful trends. There is hope.
What You Will Learn
[list]
  • The ways that data labeling and storage impact machine learning and how feedback loops can occur
  • The history and inner-workings of YouTube’s recommendation algorithm
  • The state-of-the-art capabilities of AI-powered text generation (GPT-3) and video synthesis/doctoring (deepfakes) and how these technologies have been used so far
  • The algorithmic tools available to help with automated fact-checking and truth-detection
    [/list]

    Who This Book is For
    People who don’t have a technical background (in data, computers, etc.) but who would like to learn how algorithms impact society; business leaders who want to know the powers and perils of relying on artificial intelligence. A secondary audience is people with a technical background who want to explore the larger social and societal impact of their work.

  •   User comments    Sort newest first

    No comments have been posted yet.



    Post anonymous comment
  • Comments need intelligible text (not only emojis or meaningless drivel).
  • No upload requests, visit the forum or message the uploader for this.
  • Use common sense and try to stay on topic.

  • :) :( :D :P :-) B) 8o :? 8) ;) :-* :-( :| O:-D Party Pirates Yuk Facepalm :-@ :o) Pacman Shit Alien eyes Ass Warn Help Bad Love Joystick Boom Eggplant Floppy TV Ghost Note Msg


    CAPTCHA Image 

    Anonymous comments have a moderation delay and show up after 15 minutes