Torrent details for " Master Class Machine Learning Using Google Cloud (2021) [CoursesGhar]"    Log in to bookmark

wide
Torrent details
Cover
Download
Torrent rating (0 rated)
Controls:
Category:
Language:
English English
Total Size:
1.52 GB
Info Hash:
19f6985ebf4b03ad1f08b320e40a69a4eee7d49b
Added By:
Added:  
08-07-2021 11:55
Views:
401
Health:
Seeds:
0
Leechers:
0
Completed:
35
wide




Description
wide
Master Class Machine Learning Using Google Cloud (2021) [CoursesGhar]
MP4 | Video: h264, 1280x720 | Audio: AAC, 44100 Hz | Language: English | Size: 1.51 GB | Duration: 5h 27m
Please Support Us By Giving A Click On ADS on CoursesGhar


What you'll learn
Machine learning concepts
How to code and access data stored in a cloud environment
Simple and Multiple Linear Regression
Logistics Regression
Decision Tree
Random Forest
XG Boost
Unsupervised Algorithms - Centroid (kNN based) and Hierarchical
How to go about a ML project
Python programming
Exploratory Data Analysis (EDA)

Requirements
None. (Python is covered extensively in the course)

Description
Machine learning is a subset of artificial intelligence that is at the forefront of digital transformation in the world. Thanks to machine learning, it is now possible to detect diseases, know the defaulters of a loan and know the future sales of a product. All these information can be had proactively and not as an after the fact scenario. Machine learning and artificial intelligence-based roles are in great demand in the job market and such roles offer a higher salary than traditional programming roles.

This course covers the concepts of machine learning as well as the application of these concepts using case studies and examples, along with a walk through of the python codes. Python programming is also covered for the benefit of those who are new to python and those who want to refresh some of the topics in python.

The following algorithms are covered in detail:

Simple and multiple linear regression

Logistic regression

Decision tree, Random forest and XG boost

Unsupervised algorithms - Cluster (kNN based) and Hierarchical.

Learners will also understand how to develop the above machine learning in a cloud environment. They will learn not just to code in cloud but also to access the data stored in cloud. This will be particularly helpful to learners since many organizations are adopting cloud at a fast pace.

A key aspect of the course is the coverage of Exploratory Data Analysis (EDA). EDA covers the set of activities that you do before you start the ML project.

Lastly, how to pursue a machine learning project has been covered.

This course is taught by an industry veteran, who brings his vast experiences and practical perspectives into the program.

Who this course is for:
Professionals wanting to shift to ML roles
Students
ML professionals who are looking for a refresher


Image error

  User comments    Sort newest first

No comments have been posted yet.



Post anonymous comment
  • Comments need intelligible text (not only emojis or meaningless drivel).
  • No upload requests, visit the forum or message the uploader for this.
  • Use common sense and try to stay on topic.

  • :) :( :D :P :-) B) 8o :? 8) ;) :-* :-( :| O:-D Party Pirates Yuk Facepalm :-@ :o) Pacman Shit Alien eyes Ass Warn Help Bad Love Joystick Boom Eggplant Floppy TV Ghost Note Msg


    CAPTCHA Image 

    Anonymous comments have a moderation delay and show up after 15 minutes