Torrent details for "Deep Learning for Computer Vision with Python: ImageNet Bundle [NulledPremium]"    Log in to bookmark

wide
Torrent details
Cover
Download
Torrent rating (0 rated)
Controls:
Category:
Language:
English English
Total Size:
26.17 MB
Info Hash:
ba936a65a276a2cf6ee44051f1ba5e25d4360330
Added By:
Added:  
03-11-2019 15:00
Views:
516
Health:
Seeds:
1
Leechers:
0
Completed:
489
wide




Description
wide
For More Ebooks Visit NulledPremium >>> NulledPremium.com

Image error

Book Details
Format: pdf
Size: 26 MB

Inside this bundle, I demonstrate how to build a custom Python framework to train network architectures from scratch — this is the exact same framework I use when training my own neural networks. We’ll use this framework to train AlexNet, VGGNet, SqueezeNet, GoogLeNet, and ResNet on the challenging ImageNet dataset.

Using the training techniques I outline in this bundle, you’ll be able to reproduce the results you see in popular deep learning papers and publications — this is an absolute must for anyone doing research and development in the deep learning space.

To demonstrate advanced deep learning techniques in action, I provide a number of case studies, including age + gender recognition, emotion and facial expression recognition, car make + model recognition, and automatic image orientation correction.

This bundle also includes a special BONUS GUIDE that reviews Faster R-CNNs and Single Shot Detectors (SSDs) and how to use them.

  User comments    Sort newest first

No comments have been posted yet.



Post anonymous comment
  • Comments need intelligible text (not only emojis or meaningless drivel).
  • No upload requests, visit the forum or message the uploader for this.
  • Use common sense and try to stay on topic.

  • :) :( :D :P :-) B) 8o :? 8) ;) :-* :-( :| O:-D Party Pirates Yuk Facepalm :-@ :o) Pacman Shit Alien eyes Ass Warn Help Bad Love Joystick Boom Eggplant Floppy TV Ghost Note Msg


    CAPTCHA Image 

    Anonymous comments have a moderation delay and show up after 15 minutes