Torrent details for "Building Recommender Systems with Machine Learning and AI: Help people discover new products and con..."    Log in to bookmark

wide
Torrent details
Cover
Download
Torrent rating (0 rated)
Controls:
Category:
Language:
English English
Total Size:
47.93 MB
Info Hash:
716c6c4441b919e8f7ccdcc30ef271e718fcda63
Added By:
Added:  
05-10-2019 16:11 (edited 05-10-2019 16:12) by DiamondB
Views:
754
Health:
Seeds:
0
Leechers:
0
Completed:
20
wide




Description
wide
For More Content Visit NulledPremium >>> NulledPremium.com

Image error

Book details

Format: epub
File Size: 47 MB
Print Length: 512 pages
Publisher: Sundog Education (11 August 2018)
Sold by: Amazon Asia-Pacific Holdings Private Limited
Language: English
ASIN: B07GCV5JCZ

Learn how to build recommender systems from one of Amazon’s pioneers in the field. Frank Kane spent over nine years at Amazon, where he managed and led the development of many of Amazon’s personalized product recommendation technologies.

You’ve seen automated recommendations everywhere – on Netflix’s home page, on YouTube, and on Amazon as these machine learning algorithms learn about your unique interests, and show the best products or content for you as an individual. These technologies have become central to the largest, most prestigious tech employers out there, and by understanding how they work, you’ll become very valuable to them.

This book is adapted from Frank’s popular online course published by Sundog Education, so you can expect lots of visual aids from its slides and a conversational, accessible tone throughout the book. The graphics and scripts from over 300 slides are included, and you’ll have access to all of the source code associated with it as well.

We’ll cover tried and true recommendation algorithms based on neighborhood-based collaborative filtering, and work our way up to more modern techniques including matrix factorization and even deep learning with artificial neural networks. Along the way, you’ll learn from Frank’s extensive industry experience to understand the real-world challenges you’ll encounter when applying these algorithms at large scale and with real-world data.

This book is very hands-on; you’ll develop your own framework for evaluating and combining many different recommendation algorithms together, and you’ll even build your own neural networks using Tensorflow to generate recommendations from real-world movie ratings from real people. We’ll cover:

Building a recommendation engine
Evaluating recommender systems
Content-based filtering using item attributes
Neighborhood-based collaborative filtering with user-based, item-based, and KNN CF
Model-based methods including matrix factorization and SVD
Applying deep learning, AI, and artificial neural networks to recommendations
Session-based recommendations with recursive neural networks
Scaling to massive data sets with Apache Spark machine learning, Amazon DSSTNE deep learning, and AWS SageMaker with factorization machines
Real-world challenges and solutions with recommender systems
Case studies from YouTube and Netflix
Building hybrid, ensemble recommenders
This comprehensive book takes you all the way from the early days of collaborative filtering, to bleeding-edge applications of deep neural networks and modern machine learning techniques for recommending the best items to every individual user.

The coding exercises for this book use the Python programming language. We include an intro to Python if you’re new to it, but you’ll need some prior programming experience in order to use this book successfully. We also include a short introduction to deep learning, Tensorfow, and Keras if you are new to the field of artificial intelligence, but you’ll need to be able to understand new computer algorithms.

Dive in, and learn about one of the most interesting and lucrative applications of machine learning and deep learning there is!


  User comments    Sort newest first

No comments have been posted yet.



Post anonymous comment
  • Comments need intelligible text (not only emojis or meaningless drivel).
  • No upload requests, visit the forum or message the uploader for this.
  • Use common sense and try to stay on topic.

  • :) :( :D :P :-) B) 8o :? 8) ;) :-* :-( :| O:-D Party Pirates Yuk Facepalm :-@ :o) Pacman Shit Alien eyes Ass Warn Help Bad Love Joystick Boom Eggplant Floppy TV Ghost Note Msg


    CAPTCHA Image 

    Anonymous comments have a moderation delay and show up after 15 minutes