Externally indexed torrent
If you are the original uploader, contact staff to have it moved to your account
Textbook in PDF format
High-Performance Computing using FPGA covers the area of high performance reconfigurable computing (HPRC). This book provides an overview of architectures, tools and applications for High-Performance Reconfigurable Computing (HPRC). FPGAs offer very high I/O bandwidth and fine-grained, custom and flexible parallelism and with the ever-increasing computational needs coupled with the frequency/power wall, the increasing maturity and capabilities of FPGAs, and the advent of multicore processors which has caused the acceptance of parallel computational models. The Part on architectures will introduce different FPGA-based HPC platforms: attached co-processor HPRC architectures such as the CHREC’s Novo-G and EPCC’s Maxwell systems tightly coupled HRPC architectures, e.g. the Convey hybrid-core computer reconfigurably networked HPRC architectures, e.g. the QPACE system, and standalone HPRC architectures such as EPFL’s CONFETTI system. The Part on Tools will focus on high-level programming approaches for HPRC, with chapters on C-to-Gate tools (such as Impulse-C, AutoESL, Handel-C, MORA-C ) Graphical tools (MATLAB-Simulink, NI LabVIEW) Domain-specific languages, languages for heterogeneous computing(for example OpenCL, Microsoft’s Kiwi and Alchemy projects). The part on Applications will present case from several application domains where HPRC has been used successfully, such as Bioinformatics and Computational Biology Financial Computing Stencil computations Information retrieval Lattice QCD Astrophysics simulations Weather and climate modeling.
This book is concerned with the emerging field of High Performance Reconfigurable Computing (HPRC), which aims to harness the high performance and relative low power of reconfigurable hardware–in the form Field Programmable Gate Arrays (FPGAs)–in High Performance Computing (HPC) applications. It presents the latest developments in this field from applications, architecture, and tools and methodologies points of view. We hope that this work will form a reference for existing researchers in the field, and entice new researchers and developers to join the HPRC community.
The book includes:
Thirteen application chapters which present the most important application areas tackled by high performance reconfigurable computers, namely: financial computing, bioinformatics and computational biology, data search and processing, stencil computation e.g. computational fluid dynamics and seismic modeling, cryptanalysis, astronomical N-body simulation, and circuit simulation.
Seven architecture chapters which present both commercial and academic parallel FPGA architectures, low latency and high performance FPGA-based networks and memory architectures for parallel machines, and a high speed optical dynamic reconfiguration mechanism for HPRC.
Five tools and methodologies chapters which address the important issue of productivity and high performance in HPRC. These include a study of precision and arithmetic issues in HPRC, comparative studies of C-based high level synthesis tools and RTL-based approaches, taxonomy of HPRC tools and a framework of their analysis, and an integrated hardware-software-application approach to HPRC