Torrent details for "Forsyth D. Probability and Statistics for Computer Science 2018 [andryold1]"    Log in to bookmark

Torrent details
Cover
Download
Torrent rating (0 rated)
Controls:
Category:
Language:
English English
Total Size:
6.80 MB
Info Hash:
6e91e3b201236bda0260f132dfc0c4e99475442a
Added By:
Added:  
28-11-2022 17:30
Views:
125
Health:
Seeds:
1
Leechers:
0
Completed:
93




Description
Externally indexed torrent
If you are the original uploader, contact staff to have it moved to your account
Textbook in PDF format

This textbook is aimed at computer science undergraduates late in sophomore or early in junior year, supplying a comprehensive background in qualitative and quantitative data analysis, probability, random variables, and statistical methods, including machine learning.
With careful treatment of topics that fill the curricular needs for the course, Probability and Statistics for Computer Science features:
A treatment of random variables and expectations dealing primarily with the discrete case.
A practical treatment of simulation, showing how many interesting probabilities and expectations can be extracted, with particular emphasis on Markov chains.
A clear but crisp account of simple point inference strategies (maximum likelihood Bayesian inference) in simple contexts. This is extended to cover some confidence intervals, samples and populations for random sampling with replacement, and the simplest hypothesis testing.
A chapter dealing with classification, explaining why it’s useful how to train SVM classifiers with stochastic gradient descent and how to use implementations of more advanced methods such as random forests and nearest neighbors.
A chapter dealing with regression, explaining how to set up, use and understand linear regression and nearest neighbors regression in practical problems.
A chapter dealing with principal components analysis, developing intuition carefully, and including numerous practical examples. There is a brief description of multivariate scaling via principal coordinate analysis.
A chapter dealing with clustering via agglomerative methods and k-means, showing how to build vector quantized features for complex signals.
Illustrated throughout, each main chapter includes many worked examples and other pedagogical elements such as
boxed Procedures, Definitions, Useful Facts, and Remember This (short tips). Problems and Programming Exercises are at the end of each chapter, with a summary of what the reader should know.
Instructor resources include a full set of model solutions for all problems, and an Instructor's Manual with accompanying presentation slides

  User comments    Sort newest first

No comments have been posted yet.



Post anonymous comment
  • Comments need intelligible text (not only emojis or meaningless drivel).
  • No upload requests, visit the forum or message the uploader for this.
  • Use common sense and try to stay on topic.

  • :) :( :D :P :-) B) 8o :? 8) ;) :-* :-( :| O:-D Party Pirates Yuk Facepalm :-@ :o) Pacman Shit Alien eyes Ass Warn Help Bad Love Joystick Boom Eggplant Floppy TV Ghost Note Msg


    CAPTCHA Image 

    Anonymous comments have a moderation delay and show up after 15 minutes