Torrent details for "Deep Learning Recommendation Algorithms with Python"    Log in to bookmark

wide
Torrent details
Cover
Download
Torrent rating (1 rated)
Controls:
Category:
Language:
English English
Total Size:
4.22 GB
Info Hash:
0c6313645bacbebdcbc5b6b44614ccc832acabce
Added By:
Added:  
18-09-2022 03:09
Views:
380
Health:
Seeds:
3
Leechers:
27
Completed:
59
wide



Thanks for rating :
TheIndianPirate:_male: (5),


Description
wide
Image error
Description

We’ll cover tried and true recommendation algorithms based on neighborhood-based collaborative filtering, and work our way up to more modern techniques including matrix factorization and even deep learning with artificial neural networks. Along the way, you’ll learn from our extensive industry experience to understand the real-world challenges you’ll encounter when applying these algorithms at large scale and with real-world data.

You’ve seen automated recommendations everywhere – on Netflix’s home page, on YouTube, and on Amazon as these machine learning algorithms learn about your unique interests, and show the best products or content for you as an individual. These technologies have become central to the largest, most prestigious tech employers out there, and by understanding how they work, you’ll become very valuable to them.

We’ll cover tried and true recommendation algorithms based on neighborhood-based collaborative filtering, and work our way up to more modern techniques including matrix factorization and even deep learning with artificial neural networks.

Recommender systems are complex; don’t enroll in this course expecting a learn-to-code type of format. There’s no recipe to follow on how to make a recommender system; you need to understand the different algorithms and how to choose when to apply each one for a given situation. We assume you already know how to code.

However, this course is very hands-on; you’ll develop your own framework for evaluating and combining many different recommendation algorithms together, and you’ll even build your own neural networks using Tensorflow to generate recommendations from real-world movie ratings from real people.

This comprehensive course takes you all the way from the early days of collaborative filtering, to bleeding-edge applications of deep neural networks and modern machine learning techniques for recommending the best items to every individual user.

The coding exercises in this course use the Python programming language. We include an intro to Python if you’re new to it, but you’ll need some prior programming experience in order to use this course successfully. We also include a short introduction to deep learning if you are new to the field of artificial intelligence, but you’ll need to be able to understand new computer algorithms.
Who this course is for:

   Software developers interested in applying machine learning and deep learning to product or content recommendations
   Engineers working at, or interested in working at large e-commerce or web companies
   Computer Scientists interested in the latest recommender system theory and research

Requirements

   Some experience with a programming or scripting language (preferably Python)
   Some computer science background, and an ability to understand new algorithms.

Last Updated 8/2022

  User comments    Sort newest first

No comments have been posted yet.



Post anonymous comment
  • Comments need intelligible text (not only emojis or meaningless drivel).
  • No upload requests, visit the forum or message the uploader for this.
  • Use common sense and try to stay on topic.

  • :) :( :D :P :-) B) 8o :? 8) ;) :-* :-( :| O:-D Party Pirates Yuk Facepalm :-@ :o) Pacman Shit Alien eyes Ass Warn Help Bad Love Joystick Boom Eggplant Floppy TV Ghost Note Msg


    CAPTCHA Image 

    Anonymous comments have a moderation delay and show up after 15 minutes